Hybrid Cube Half Mirrors | **HCHB**

RoHS

Application Systems

- Machine Vision
- Manual **Positions**
- Motion Control **Products**
- Optical &

Mirror Holder

- FA Parts
- Measurement &Control
- FA Electrical Parts
- Tool & Measure
- Cleanroom & AntiStatic
- Index

Mirrors

Beamsplitters

Filters

Polarizers

Lenses

Multi-Element Optics

Prisms

Substrates & Windows Holder & Vibration isolator

Low polarizing cube half mirrors that can be used for broadband visible and infrared light. Applicable for polarizing systems and lasers with multiple wavelength or visible light.

- This hybrid coating is composite based consisting of dielectric multi-layer and metallic coatings. The result is low polarizing and broadband.
- ◆ As it is cube shaped, there will not be any lateral shift of the optical axis when a normal incident beam is applied. During transmission and reflection of lights, the aperture remains unchanged.
- Even when the orientation of linear polarization has been changed, beams are equally divided as reflected (R): transmitted

Specifications		
Material	BK7	
Surface flatness of substrate	λ/4	
Beam Deviation	<5′	
Coating	Hypotenuse surface: Hybrid coating (dielectric multi-layer coating and metallic coating) Four surfaces: Multi-layer anti-reflection coating	
Incident angle	0°	
Divergence ratio (reflectance : transmittance)	1:1	
Laser Damage Threshold	0.3J/cm ² (Laser pulse width 10ns, repetition frequency 20Hz)	
Surface Quality (Scratch-Dig)	40–20	
Clear aperture	85% of actual dimension	

Guide

- ▶ Please contact our International Sales Division for customized products. (Customized on size, wavelength or R:T, etc.) Refer
- For a guarantee in reflected wavefront error or transmitted wavefront error, please contact our International Sales Division.

Attention

- ▶ Input beam from the prism side is indicated by a ○. Reflection and refraction over wavelength will differ when light input is applied from the opposite side of the prism.
- ▶ Approximately 10% to 15% of absorption occurs in hybrid coating due to the properties in metallic coating. Hence, any additional transmitted or reflected light will not achieve 100%
- Phase retardation of light input will not be preserved. Use a waveplate for phase compensation.
- ▶ Wavelength dispersion on transmitted and reflected light derives from refraction index and glass thickness. And also, when diverging or introducing a focusing beam, chromatic aberration or spherical aberration may occur.

Specifications					
Part Number	Wavelength Range [nm]	A=B=C [mm]	Transmittance [%]	Polarization dependency Tp-Ts [%]	
HCHB-10-550	400 – 700	10	45±10 (550nm)	<10	
HCHB-15-550	400 – 700	15	45±10 (550nm)	<10	
HCHB-20-550	400 – 700	20	45±10 (550nm)	<10	
HCHB-10-NIR	700 – 1100	10	47±10 (900nm)	<20 (<10: 800 – 1100nm)	
HCHB-15-NIR	700 – 1100	15	47±10 (900nm)	<20 (<10: 800 – 1100nm)	
HCHB-20-NIR	700 – 1100	20	47±10 (900nm)	<20 (<10: 800 – 1100nm)	
HCHB-10-IR	1300 – 1550	10	45±10 (1400nm)	<10	
HCHB-15-IR	1300 – 1550	15	45±10 (1400nm)	<10	
HCHB-20-IR	1300 – 1550	20	45±10 (1400nm)	<10	

Typical Transmittance Data

T: Transmission

Compatible Optic Mounts