Dielectric Mirrors for High Power Laser

DHPLM

RoHS

All dielectric designs are much more resistant to laser damage than typical mirrors and are suitable for use with high power laser systems.

- All Dielectric Mirrors for High Power Laser are manufactured using dielectric multi-layer coatings of alternating high and low index layers.
- These are specifically designed for use at 45 degrees (AOI).
- All dielectric designs are much more resistant to laser damage than typical mirrors and are suitable for use with high power laser systems.
- Mirrors for YAG lasers are also available.

Schematic

Outline Drawing	
D	

S	Specifications			
Ma	aterial	BK7		
Co	pating	Dielectric multi-layer coating		
Ind	cident angle	45°±3°		
Su	ırface Flatness	λ/10		
Pa	ırallelism	<3′		
Su	rface Quality (Scratch-Dig)	10–5		
CI	ear aperture	90% of Actual Aperture		
Re	ear Surface	Polished		

Guide

- ▶ Please contact our International Sales Division for customized products. (customized on outer diameter, wavelength characteristic, etc.) Please use the inquiry sheet. Reference C036
- Also available are our surface flatness guarantee (SAGM) mirrors with accuracy guarantee after surface coating. Refe

Attention

- ▶ Reflectance of dielectric mirrors will vary according to the polarization of the input beams.
- The un-coated rear surface of the mirror is polished and is indicated with an arrow on the side of the substrate.
- ▶ Reflectance of laser line mirrors are different according to the polarization of input beams. S-polarization has the high reflectance and the wide reflective bandwidth compared with p-polarization. The reflectance in the specifications list is that of random polarization or (p-polarization reflectance + s-polarization reflectance) / 2.
- The reflectance curves are based on actual measurements and may be different with production lots. Be sure to wear laser safety goggles when checking optical path and adjusting optical axis.
- ▶ The surface flatness is the reflected surface wavefront distortion before coating.

Specifications					
Material	BK7				
Coating	Dielectric multi-layer coating				
Incident angle	45°±3°				
Surface Flatness	λ/10				
Parallelism	<3′				
Surface Quality (Scratch-Dig)	10–5				
Clear aperture	90% of Actual Aperture				

Specifications							
Part Number	Wavelength Range [nm]	Diameter D [mm]	Thickness t [mm]	Reflectance [%]	Laser Damage Threshold ^a [J/cm²]		
DHPLM-25.4C05-193	193	φ25.4	5	>95	2		
DHPLM-30C05-193	193	φ30	5	>95	2		
DHPLM-50C08-193	193	φ50	8	>95	2		
DHPLM-25.4C05-248	248	φ25.4	5	>98	4		
DHPLM-30C05-248	248	φ30	5	>98	4		
DHPLM-50C05-248	248	φ50	8	>98	4		
DHPLM-25.4C05-266	266	φ25.4	5	>98	5		
DHPLM-30C05-266	266	φ30	5	>98	5		
DHPLM-50C08-266	266	ϕ 50	8	>98	5		
DHPLM-25.4C05-355	355	φ25.4	5	>99	8		
DHPLM-30C05-355	355	φ30	5	>99	8		
DHPLM-50C08-355	355	φ50	8	>99	8		
DHPLM-25.4C05-532	532	φ25.4	5	>99	26.5		
DHPLM-30C05-532	532	φ30	5	>99	26.5		
DHPLM-50C08-532	532	φ50	8	>99	26.5		
DHPLM-25.4C05-1064	1064	φ25.4	5	>99	28		
DHPLM-30C05-1064	1064	φ30	5	>99	28		
DHPLM-50C08-1064	1064	φ50	8	>99	28		

^{*} Angle of incidence 0°, laser pulse width 10ns, repetition frequency 20Hz

Application Systems

Machine Vision

Manual **Positions**

Motion Control Products

Optical & Mirror Holder

FA Parts

Measurement &Control

FA Electrical Parts

Tool & Measure

Cleanroom & AntiStatic

Index

Mirrors

Beamsplitters

Filters

Polarizers

Lenses

Multi-Element Optics

Prisms

Substrates & Windows Holder & Vibration isolator

DHPLM

Dielectric Mirrors for High Power Laser

Application Systems

Machine Vision

Manual **Positions**

Motion Control Products

Optical & Mirror Holder

FA Parts

Measurement &Control

FA Electrical Parts

Tool & Measure

Cleanroom & AntiStatic

Index

Mirrors

Beamsplitters

Filters

Polarizers

Lenses

Multi-Element Optics

Prisms

Substrates & Windows Holder &

Vibration isolator

Typical Reflectance Data

R: Reflectance

DHPLM-532

 λ [nm]

DHPLM-1064

800