

Quartz waveplates are zero-order retardation plates (phase plates) which are assembled from pairs of optically contacted crystalline quartz plates and are mounted on aluminum frames. Unlike multiple-order (higher-order) waveplates that are made from a single quartz plate, the net retardations of zero-order waveplates are only slightly affected by temperature change.

- These products utilize birefringence of quartz and give phase difference of $\lambda/4$ ($\pi/2$, 90°) or $\lambda/2$ (π , 180°) to the input beams. $\lambda/4$ retarders convert linearly polarization to circularly and circularly polarization to linearly. $\lambda/2$ retarders convert the direction of polarization in 90 degrees.
- Usually linearly polarized beams are input to the waveplates in a leaning of 45 degrees against its optic axis.

Linearly polarized light

Aluminum frame

Multi-layer anti-reflection coating

Multi-laver anti-reflection coating

Optic axis (fast)

Optic axis (fast)

Schematic

Multi-layer anti-refle

Linearly polarized light

Linearly polarized light

Multi-layer anti-reflection

Optic axis (slow)

Optic axis (slow)

Specifications			
Material	Optical grade crystalline quarts		
Material of frame	Aluminum Finishing: Black anodized		
Clear aperture	17×17mm		
Surface flatness of substrate	λ/10		
Angular deviation of beam	<5"		
Coating	Both surfaces: Narrowband multi-layer anti-reflection coating		
Transmittance	>98.5%		
Laser Damage Threshold	1J/cm ² (Laser pulse width 10ns, repetition frequency 20Hz)		
Surface Quality (Scratch-Dig)	20–10		

Guide

▶ Please contact our Sales Division for customized products. (Customized on size etc.)

Attention

- These products can be used for the beams which wavelengths are in +/-1% of rated wavelength.
- The surface flatness is the reflected wavefront distortion of the surface before coating.
- ▶ Be sure to wear laser safety goggles when checking optical path and adjusting optical axis.

Application Systems

Optics & Optical Coatings

> Opto-Mechanics

Bases

Manual **Stages**

Actuators & Adjusters

Motoeized Stages

Light Sources & Laser Safety

Index

Guide

Mirrors

Beamsplitters

Polarizers

Lenses

Multi-Element Optics

Filters

Prisms

Substrates/Windows

Optical Data

Maintenance

Selection Guide

Polarizing Beamsplitters

Waveplates

Polarizers

Compatible Optic Mounts

Quartz Waveplates | WPQ

Application Systems

Optics & Optical Coatings

Opto-Mechanics

Bases

Manual Stages

Actuators & Adjusters

Motoeized Stages

Light Sources & Laser Safety

Index

Guide

Mirrors

Beamsplitters

Polarizers

Lenses

Multi-Element Optics

Filters

Prisms

Substrates/Windows

Optical Data

Maintenance

Selection Guide Polarizing Beamsplitters

Waveplates

Polarizers

$\lambda/2$					
Part Number	Wavelength Range [nm]	Theoretical retardation [nm]	Retardation tolerance		
WPQ-2660-2M	266	133.0	<λ/50		
WPQ-3250-2M	325	162.5	<λ/50		
WPQ-3550-2M	355	177.5	<λ/50		
WPQ-4050-2M	405	202.5	λ/100 – λ/200		
WPQ-4100-2M	410	205.0	λ/100 – λ/200		
WPQ-4416-2M	441.6	220.8	λ/100 – λ/200		
WPQ-4579-2M	457.9	229.0	λ/100 – λ/200		
WPQ-4880-2M	488	244.0	λ/100 – λ/200		
WPQ-5145-2M	514.5	257.3	λ/100 – λ/200		
WPQ-5320-2M	532	266.0	λ/100 – λ/200		
WPQ-6328-2M	632.8	316.4	$\lambda/100 - \lambda/200$		
WPQ-6700-2M	670	335.0	λ/100 – λ/200		
WPQ-7800-2M	780	390.0	λ/200 – λ/500		
WPQ-8300-2M	830	415.0	λ/200 – λ/500		
WPQ-10640-2M	1064	532.0	λ/200 – λ/500		
WPQ-13000-2M	1300	650.0	λ/200 – λ/500		
WPQ-15500-2M	1550	775.0	λ/200 – λ/500		

λ/4					
Part Number	Wavelength Range [nm]	Theoretical retardation [nm]	Retardation tolerance		
WPQ-2660-4M	266	66.5	< <i>λ</i> /50		
WPQ-3250-4M	325	81.3	<λ/50		
WPQ-3550-4M	355	88.8	<λ/50		
WPQ-4050-4M	405	101.3	λ/100 – λ/200		
WPQ-4100-4M	410	102.5	λ/100 – λ/200		
WPQ-4416-4M	441.6	110.4	$\lambda/100 - \lambda/200$		
WPQ-4579-4M	457.9	114.5	$\lambda/100 - \lambda/200$		
WPQ-4880-4M	488	122.0	λ/100 – λ/200		
WPQ-5145-4M	514.5	128.6	λ/100 – λ/200		
WPQ-5320-4M	532	133.0	λ/100 – λ/200		
WPQ-6328-4M	632.8	158.2	$\lambda/100 - \lambda/200$		
WPQ-6700-4M	670	167.5	λ/100 – λ/200		
WPQ-7800-4M	780	195.0	$\lambda/200 - \lambda/500$		
WPQ-8300-4M	830	207.5	$\lambda/200 - \lambda/500$		
WPQ-10640-4M	1064	266.0	λ/200 – λ/500		
WPQ-13000-4M	1300	325.0	λ/200 – λ/500		
WPQ-15500-4M	1550	387.5	λ/200 – λ/500		

