是高能量YAG激光用的波长板。有基本波（ 1064 nm ）到四次谐波（ 266 nm ）的系列产品。 2枚元件之间采用空气隙型接合方法的波长板，提高了激光损伤阈值。

- 由于是零次波长板，相位差随温度变化很小，非常稳定。
- 波长板有可以旋转偏光方向的 $1 / 2$ 波长板和可以将直线偏光变换为圆偏光的 $1 / 4$ 波长板 2 种类型。
- 光学元件固定在框架上，安装在支架上时，不会使元件产生应力。
- 由于2枚元件的两面（共4面）都铰有防反射膜，具有高透过率。

功能说明图

－入／2板

－入／4板

技术指标	
材质	水晶
框架材质	铝合金 表面处理：黑色阳极氧化
有效范围	$15 \times 15 \mathrm{~mm}$
基本面型精度	$\lambda / 10$
光束偏角	$<5^{\prime \prime}$
镀膜	双面：防反射膜（4面）
透过率	$>98 \%$
表面质量	$20-10$

信息

承接制造适用产品目录之外的波长的波长板。

注意

使用前，请务必确认入射激光光束的能量密度没有超过激光损伤阈值。
－通过透镜或凹面反射使激光光束变细后入射时，如果能量密度超过元件的激光损伤阈值，元件有破损的危险。
－射入适用波长之外的波长的光线时，不能得到技术指标那样的相位差。波长发生 1% 偏离时， $1 / 2$ 波长板会产生 1.8 度的相位差偏差， $1 / 4$ 波长板会产生 0.9 度的相位差偏差。

框架的厚度（ 8.3 mm ）可能随元件的技术指标的变化而变化。
请不要接触波长板框架的螺纹。否则特性可能会变差，元件可能会脱落。
波长板框架受到强烈的冲击时，元件的轴心可能会发生偏差，导致特性变差。

$\lambda / 2$ 板				
型号	适用波长 （ nm ）	纯延迟设计值 （nm）	纯延迟误差	激光损伤阈值＊ （ $\mathrm{J} / \mathrm{cm}^{2}$ ）
WPQG－2660－2M	266	133.0	$<\lambda / 50$	1.4
WPQG－3550－2M	355	177.5	＜$\lambda / 50$	4
WPQG－5320－2M	532	266.0	$\lambda / 100 \sim \lambda / 200$	4
WPQG－10640－2M	1064	532.0	$\lambda / 200 \sim \lambda / 500$	7

※激光脉冲宽 10 ns ，重复频率 20 Hz

| $\lambda / 4$ 板 | | | |
| :--- | :---: | :---: | :---: | :---: |
| 型号 | 适用波长
 (mm) | 纯延迟设计值
 (nm) | 纯延迟误差 |

※激光脉冲宽 10 ns ，重复频率 20 Hz

